
Applied Mathematics and Computation 458 (2023) 128264

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Graphical representation and hierarchical decomposition 

mechanism for vertex-cover solution space

Wei Wei a,b,c,d, Xiangnan Feng e,∗

a School of Mathematical Sciences, Beihang University, Beijing, 100191, People’s Republic of China
b Key Laboratory of Mathematics, Informatics and Behavioural Semantics, Ministry of Education, 100191, People’s Republic of China
c Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, 100191, People’s Republic of China
d Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, People’s Republic of China
e Center for Humans and Machines, Max Planck Institute for Human Development, Berlin, 14195, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

KE-layer structure
Minimum vertex cover
Random graphs
Solution space expression

NP problems act essential roles in modelling and analysing various complex systems, and 
representation learning of system individuals and relations has faced the kernel difficulty in 
understanding the complexity and solving the NP problems. In this paper, solution space 
organisation of minimum vertex-cover problem is deeply investigated using the famous König-
Egérvary (KE) graph and theorem, in which a hierarchical decomposition mechanism named KE-
layer structure of general graphs is proposed to reveal the complexity of vertex-cover. To achieve 
the graphical representation and hierarchical decomposition, an algorithm to verify the KE graph 
is given by the solution space expression of vertex-cover, and the relation between multi-layer KE 
graphs and maximal matching is illustrated and proved. Furthermore, a framework to calculate 
the KE-layer number and approximate the minimal vertex-cover is provided, with different 
strategies of switching nodes and counting energy. The phase transition phenomenon between 
different KE-layers is studied with the transition points located, and searching of vertex-cover 
got by this strategy presents comparable advantage against several other methods. Its efficiency 
outperforms the existing ones just before the transition point. The graphical representation and 
hierarchical decomposition provide a new perspective to illustrate the structural organisations of 
graphs better, and its formation mechanism can help reveal the intrinsic complexity and establish 
heuristic strategy for large-scale graphs/systems recognition.

1. Introduction

As the development of the computer science and artificial intelligence, the concern on data analysis and objective optimization 
becomes increasingly important. Many cutting-edge technologies in machine learning and deep learning greatly promote the current 
research in a variety of fields [1,2]. Core difficulty faced by these technologies is commonly and mainly the high computational 
complexity induced by the real-world applications. Different approximating strategies on the computing-hard problems (i.e., NP even 
NP-Complete problems) have achieved a great success in game theory, natural language processing, image processing etc., assisted 
with the computer software and hardware technologies. For example, exhaustive searching in game theory can be substituted by 
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strategic computation using deep reinforcement learning [3], feature extraction and pattern recognition in image processing can be 
automatically accomplished by convolution and pooling in convolution neural network [4], and graph partition in combinatorial 
optimization can be calculated by node coding using graph representation learning [5]. A large range of NP and NP-Complete 
problems in various applications provides scenarios for the nowadays artificial intelligence technologies.

Combined with tools from statistics and graph theory, a large number of researches from graph-based complex systems (networks) 
[6] have been applied in many engineering and natural science fields, like biology [7], social structure [8], world wide web (WWW) 
[9] and human dynamics [10]. Transforming irregular complex systems into regularized organizations/representations is always an 
active topic in system learning, e.g., the images are treated as tensor in convolution neural network [11], and the graph nodes can be 
expressed as vectors in graph representation learning [12–14]. For NP or NP-Complete problems such as combinatorial optimization 
problems based on graphs, expressing underlying roles or relations of the nodes is also a kernel idea to solve and understand their 
complexity. In statistical mechanics, the nodes on a graph of combinatorial optimization problems are assigned marginal probabilities 
in the solution space by the replica and cavity method [15,17], which can also be viewed as nodes’ representation to reveal the 
underlying values and relations. The representation mechanism of network/graph aims at decoupling the complicated relations 
among the nodes to simplify the whole system, which is generally focused on in the nowadays representation learning research 
[18,19]. In classical linear algebraic systems, its solution spaces can be represented by a linear space composed of some basis vectors 
[20], and in a class of pure nonlinear algebraic system there is still a group of basis representation for all of its solutions [21]. 
Meanwhile, hierarchical decomposition of networks/graph provides effective understanding of the complicated system structure and 
functions: centrality measurements and community detecting methods like k-shell [22], k-core [23] and modularity [24], and many 
leaf-removing strategies [25,15–17,26] are commonly used, which could illustrate the layer structure of graphs and point out the 
hubs.

Existing representation studies on the NP problems mainly concern on the node status representation. We have proposed a strict 
graphical representation of the whole solution space of minimum vertex-cover problem when the graph topology is bipartite [27], 
which combined the node statuses with the edge statuses. In this paper, the corresponding results for minimum vertex-cover prob-
lem will be strictly generalized on the famous König-Egérvary (KE) graphs. Combining with the minimum coverage requirements, 
a hierarchical decomposition mechanism based on the solution space expression of the KE-subgraphs will be deeply investigated to 
reveal the intrinsic computational hardness of the NP-Complete problem. The further research on graphical representation and hier-
archical decomposition mechanism for vertex-cover solution space gives a representative instance for understanding the complexity 
of NP-Complete problems, and could provide insightful recognization and efficient way in analysing graph-based complex systems.

2. Preliminary of KE graph and solution space expression for vertex-cover

In this section, some basic knowledge about the König-Egérvary theorem with KE graphs and solution space expression technique 
for vertex-cover will be introduced as preliminary.

2.1. Relations of KE graph with minimum vertex-cover

For a graph 𝐺 composed by the vertex set 𝑉 with 𝑛 vertexes and edge set 𝐸 with 𝑚 edges, a vertex-cover is a vertex subset 
𝐶(𝐺) ⊂ 𝑉 that for any edge (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 there exists either 𝑣𝑖 ∈ 𝐶(𝐺) or 𝑣𝑗 ∈ 𝐶(𝐺). If the cardinality of vertex-cover set achieves the 
lowest, it is called the minimum vertex-cover with the corresponding cardinality named as minimum vertex-cover number of a graph. 
For a graph there could exist more than one minimum vertex-covers [28]. The problem of finding the minimum vertex-cover belongs 
to Karp’s 21 NP-Complete problems [29] and the 6 basic NP-Complete problems [30], which have broad applications in real world 
but have been recognized to be intrinsically hard to solve [31].

Another widely studied topic in graph theory is the maximum edge matching [28]. An edge matching, or independent edge set, 
of a graph is an edge subset 𝑀 ⊂ 𝐸 satisfying that any two edges in 𝑀 have no common vertex, and a vertex is matched if it is 
an endpoint of one edge in 𝑀 . The edge matching set with the largest cardinality is called the maximum (edge) matching with the 
corresponding cardinality named as maximum matching number of a graph, and there could exist more than one maximum matchings 
for a graph. Finding the maximum matching for a general graph belongs to P problems, namely for a graph its maximum matching 
could be found in polynomial time. The blossom algorithm is widely applied to find the maximum matching for general graphs 
[32], while the Hungarian maximum matching algorithm is widely used to find the maximum matching for bipartite graphs [33]. 
The maximum matching has a large number of applications, e.g., this concept is deeply related to Kekulization and the process of 
Tautomerization in chemistry [34].

Bipartite graph can associate the minimum vertex-cover with its maximum matching. A graph 𝐺 is bipartite if there exist two 
non-empty node subsets 𝑉1 and 𝑉2 with 𝑉1 ∩ 𝑉2 = ∅ and 𝑉1 ∪ 𝑉2 = 𝑉 , satisfying that for any edge (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸, 𝑣𝑖 and 𝑣𝑗 must belong 
to different subsets 𝑉1 or 𝑉2. The bipartite graph could be used to illustrate the relation between objects with two different types 
especially in social network study [35], e.g., the relations between actors and movies. One of the most crucial property of bipartite 
graph, given by König-Egérvary theorem, is that its maximum matching number is equal to its minimum vertex-cover number. This 
property builds a bridge between the maximum matching problem and minimum vertex-cover problem and makes it possible to find 
the minimum vertex-cover of bipartite graphs in polynomial time [36].

A graph whose maximum matching number equals to its minimum vertex cover number is called the König-Egérvary (KE) graph. 
There exist more types of KE graphs than the bipartite ones, and a commonly studied one is the No-Leaf-Removal-Core graph. In 
2

minimum vertex-cover problem, a leaf is regarded as a one-degree node and its neighbor with their connecting edge [16], which 
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Fig. 1. A schematic view of the graphical representation and hierarchical decomposition mechanism for vertex-cover solution space. Only double edges between free 
nodes on the reduced solution graph represent mutual-determinations, and others correspond to a group of maximum matching in the absence of ambiguity. a shows 
an example of exact solution space expression; b illustrates how to achieve a solution space expression for a KE graph.

suggests exactly one cover number and at most one edge matching in a leaf. If there exist only isolated nodes or no node after 
all the leaves are removed iteratively, this graph is called No-Leaf-Removal-Core graph [37]. For the No-Leaf-Removal-Core graph, 
its minimum vertex-cover number equals to its leaf number, and since different leaves are independent subgraphs (no common 
nodes and edges), its maximum matching number should not be smaller than its leaf number; for the vertex cover of a graph, 
each independent edge should occupy at least one cover number, and the minimum vertex-cover number must not be smaller than 
its maximum matching number. Thus, the No-Leaf-Removal-Core graph should have its maximum matching number equal to its 
minimum vertex-cover number, and it is one type of KE graph.

2.2. Solution space expression of vertex-cover

For the minimum vertex-cover problem, our aim is to locate the least number of covered nodes and make each edge on the given 
graph touched by at least one such node. Generally, one given graph owns many minimum vertex-covers which form a solution space 
for this combinatorial optimization problem.

From the former work [38], it has been already known that on structures of KE graphs including trees, no leaf-removal-core 
graphs and bipartite graphs, for minimum vertex-cover problem, we have corresponding algorithms to achieve the solution space 
expression, which is called reduced solution graph. The reduced solution graph provides a complete description of all the minimum 
vertex-cover solutions, and it can be easily obtained on these topologies [27]. On the reduced solution graph expression, all the nodes 
are classified as uncovered backbones, covered backbones and free nodes; nodes should always be uncovered or covered separately in all 
the solutions, namely frozen nodes, or could have alternative assignments on different solutions, namely unfrozen nodes; all edges are 
classified as single or double edges, in which double edges suggest the mutual-determination relations between two unfrozen nodes 
and these two nodes will mutually affect the values of each other (two free nodes in a mutual-determination relation must have one 
and only one covered node) and the single edges still follow the coverage requirement.

Using the representation of the three classes of nodes and the two types of edges on the original graph, the vertex-cover solution 
space could be sufficiently expressed for a large class of graph instances, and indeed most of the known easily-solving minimum 
vertex-cover instances belong to KE graphs [38,27], which have exact solution space expressed by the node and edge class labels. In 
Fig. 1, a schematic view of the solution space expression is provided. Fig. 1a shows the different classes of nodes and edges, and gives 
an instance for minimum vertex-cover solution space of a simple graph. In this graph, node 𝑖, marked by black, has to be covered in 
all solutions, which makes its one-degree neighbor node, marked by red, namely uncovered all the time; the double edges connect 
the free nodes, and since on each double edge, one node getting covered will make the other one uncovered, the two double edges in 
the graph lead to two covered nodes. Thus in this case, the minimum vertex-cover number of the graph is 3, and all possible solutions 
are presented by the marked nodes and different type of edges. Fig. 1b is an example of getting a solution space expression for a KE 
graph, of which detailed procedures are introduced in [27].

3. Solution space expression algorithm for vertex-cover of KE graph

In this section, an algorithm based on the solution space expression will be provided to judge whether a graph is a KE graph. 
Meanwhile, the vertex-cover solution space expression for KE graph can be obtained accordingly.

Since the edges in the maximum matching are independent and all the covered nodes must be matched nodes in a KE graph, there 
must be one and only one covered node in each matching edge, and all the unmatched nodes must be uncovered backbones in the 
minimum vertex-cover solution space of KE graph. Thus, there is a natural correspondence between the concept of edge matching 
and the mutual-determination relation on KE graphs, which also could be used to determine whether a graph is a KE one. The 
algorithm to examine the KE graph and get the solution space expression of its minimum vertex-cover is illustrated in Algorithm 1, 
3

which involves the following steps:
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Algorithm 1 Get Solution Space Expression for KE Graph Vertex-Cover.
Input: Graph 𝐺; Output: Reduced solution graph 𝑆(𝐺) of 𝐺

𝑀 = Maximum matching of 𝐺, Initialize 𝑆(𝐺) =𝐺;
for Any match (i,j) in 𝑀 do

Set (𝑖, 𝑗) as a double edge in 𝑆(𝐺);
end for

while Any unmatched node 𝑘 exists do

Set 𝑘 as uncovered backbone in 𝑆(𝐺);
𝑆(𝐺)=Freezing-Influence(𝑆(𝐺), 𝑘);

end while

𝑆(𝐺)=Conflict-Checking(𝑆(𝐺));
* 𝑆(𝐺) = ∅ means graph 𝐺 is not a KE graph.

Fig. 2. An instance for determining whether a graph is a KE one, with red nodes for uncovered backbones, black nodes for covered backbones and white nodes for 
free nodes. a is the original graph with its maximum matching from Step 1. b gives an unmatched node 𝑐 and performs a Freezing-Influence operation from Step 2. c

checks the nodes in the two cycles 𝛼, 𝛽, and finds that nodes 𝑎 and 𝑏 must be both covered backbones by Step 3. But nodes 𝑎 and 𝑏 form a matching with two covered 
nodes, which conflicts with the KE property, and in this instance it is not a KE graph.

Step 1: For the graph, find one of its maximum matching, which could be done in polynomial time. If the graph is a KE one, then 
all the covered nodes should be matched.

Step 2: Assign double edges for each matched edge and mark the unmatched nodes as uncovered backbones, do the Freezing-

Influence described in Algorithm 2 on the graph, which makes sure that all the neighbors of an uncovered backbone should be covered 
backbones, and the mutual-determination neighbors (double edges) of a covered backbone should be an uncovered backbone. If there 
is some conflict while determining the state of some nodes (i.e., some nodes are required to be covered by one neighbor and uncovered 
by another simultaneously), the cover number of the whole graph will exceed the maximum matching number and it cannot be a KE 
graph.

Step 3: Apply the Conflict-Checking from Algorithm 3 for the rest unfrozen nodes after Step 2, which involves the Freezing-

Influence and Consistency-Checking in Algorithm 2. Considering unfrozen node 𝑖, set 𝑖 as covered and uncovered separately and check 
whether there is conflict: if there are conflicts on both cases, then the graph is not a KE graph and additional cover number is 
inevitable; if there is only conflict on one case (say the covered case), then node 𝑖 should be kept away from this case (it should be an 
uncovered backbone); if there is no conflict on both cases, then node 𝑖 should be a free node. For all the new produced backbones, 
the Freezing-Influence operation should be also performed.

Step 4: If the process of Step 3 can survive after all the nodes are checked, it is a KE graph and its solution space expression of 
minimum vertex-cover could be got. Otherwise it is not a KE graph.

For the above process, conflict analysis is the key to determine whether the graph is a KE one. All the conflicts could come from
Step 2 and Step 3. For the conflict in Step 2, it results from the KE property and requirement of minimum coverage, and it is an exact 
step. For the conflict in Step 3, node 𝑖 cannot have values ensuring the KE property for both conflict cases; for the single conflict 
case, it indeed fulfills the odd cycle breaking [38], which makes it also an exact step. An instance is shown in Fig. 2.

For the obtained reduced solution graph after Steps 1-4, an important question is whether any undiscovered conflict exists when
different free nodes are assigned values? By the solution space expression of minimum vertex-cover, if one free node 𝑖 is applied 
the checking processes in Steps 1-4, it could be easily proved that node 𝑖 must be a free node in the whole solution space by the 
following process: set node 𝑖 as uncovered backbone and do the Freezing-Influence propagation; if it passes Step 3, it can fix the states 
of some nearby nodes and no conflict exists, and then the solution space shrinks; choose any residual free node to fix its state and 
repeat the operation recursively, a complete minimum coverage solution can be obtained; similarly, set 𝑖 as covered backbone and 
another complete solution can also be obtained. Therefore, node 𝑖 is proved to have a free state in the solution space.

The above process provides a way to achieve the whole vertex-cover solution space of a KE graph, and it ensures that one reduced 
solution graph can represent all the possible solutions. This process costs time only on the maximum matching and Conflict-Checking. 
4

Except the locating of maximum matching, the time complexity will cost no more than 𝑂(𝑛).
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Algorithm 2 KE Graph Verification Functions.
function Freezing-Influence(𝑆(𝐺), 𝑘)

for Any 𝑘’s neighbor 𝑗 do

Set 𝑗 as covered backbones in 𝑆(𝐺);
end for

while Any double edge (𝑖, 𝑗) has node 𝑖 covered backbone and 𝑗 unfrozen do

Make 𝑗 uncovered backbone in 𝑆(𝐺);
𝑆(𝐺)=Freezing-Influence(𝑆(𝐺), 𝑗);
Return 𝑆(𝐺)

end while

end function

function Consistency-Checking(𝑆(𝐺))
for Any uncovered backbone 𝑖 in 𝑆(𝐺) do

if There exist uncovered backbone neighbors of 𝑖 then

Return 1
end if

end for

for Any double edge in 𝑆(𝐺) do

if Its two ends are both covered backbones then

Return 1
end if

end for

Return 0
end function

Algorithm 3 Conflict Checking Process.
function Conflict-Checking(𝑆(𝐺))

Consistency-Checking(𝑆(𝐺))
for Any unfrozen node 𝑖 in 𝑆(𝐺) do

Set 𝑆𝑖+(𝐺) = 𝑆(𝐺), and set 𝑖 as uncovered backbone in 𝑆𝑖+(𝐺);
𝑆𝑖+(𝐺)=Freezing-Influence (𝑆𝑖+(𝐺), 𝑖);
𝑝𝑜𝑠𝑖 =Consistency-checking (𝑆𝑖+(𝐺));
Set 𝑆𝑖−(𝐺) = 𝑆(𝐺), and set 𝑖 as covered backbone in 𝑆𝑖−(𝐺);
if 𝑖 has a double-edge free neighbor 𝑗 then

Set 𝑗 as uncovered backbone in 𝑆𝑖−(𝐺);
𝑆𝑖−(𝐺)=Freezing-Influence (𝑆𝑖−(𝐺), 𝑗);
𝑛𝑒𝑔𝑎 =Consistency-Checking (𝑆𝑖−(𝐺));

end if

if posi=1 and nega=1 then

𝑆(𝐺) = ∅, break;
end if

if posi=1 and nega=0 then

𝑆(𝐺) = 𝑆𝑖−(𝐺);
end if

if posi=0 and nega=1 then

𝑆(𝐺) = 𝑆𝑖+(𝐺);
end if

Return 𝑆(𝐺)
end for

end function

4. Multi-layer KE subgraph decomposition for vertex-cover

4.1. Definition of multi-layer KE graph

By the definition of the KE graph whose minimum vertex-cover number is equal to its maximum matching number, there are 
strong relations between the KE graph and its maximum matching. Here, we classify all the nodes into two separated classes 𝐴1
and 𝐵1 with 𝐴1

⋃
𝐵1 = 𝑉 and 𝐴1

⋂
𝐵1 = ∅ based on the maximum matching, where it is required that every two nodes on a same 

matching edge cannot be assigned into the same class and the unmatched nodes are all placed in class 𝐵1 without loss of generality. 
Evidently there are exponential ways of arranging nodes into 𝐴1 and 𝐵1. The following result provides an alternative understanding 
of KE graphs.

Theorem. For any KE graph 𝐺, there must exist some arrangements of 𝐴∗
1 and 𝐵∗

1 in which 𝐵∗
1 has no inner-class edges, i.e., all the edges 

in 𝐺 could only be inner-class edges in 𝐴∗
1 or the inter-class edges between 𝐴∗

1 and 𝐵∗
1 , and any two matched nodes on the same matching 

edge could not belong to the same class. Correspondingly, a graph satisfying some arrangements of 𝐴∗
1 and 𝐵∗

1 above by maximum matching 
5

in which 𝐵∗
1 has no inner-class edges, must be a KE graph.
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Fig. 3. A 2-layer KE graph example and its decomposing process. a is the original graph with one maximum matching marked by double-edge. b gives a classification 
in which nodes are assigned into 𝐴1 and 𝐵1 : nodes on the same matched edge are not assigned into the same set and all unmatched nodes are placed into 𝐵1 (only 
one node in this case). There are two inner-class edges in 𝐵1 . In c the 𝐺2 is the subgraph induced by nodes in 𝐵1 and it could be decomposed into 𝐴2 and 𝐵2 . There is 
no edge in 𝐵2 in this case, which suggests that subgraph induced by 𝐵2 is a KE graph and the vertex-cover of the original graph is consisted of 𝐴1 and 𝐴2 . The cover 
number of the graph in a got by this strategy is 7, which exactly equals to the minimum cover number of this graph.

Proof. ⟹ For a KE graph 𝐺, since its minimum vertex-cover number is equal to its maximum matching number, all the covered 
nodes must be the matched nodes and each matching edge has one and only one covered nodes. Choosing all the covered nodes in a 
minimum vertex-cover to form class 𝐴∗

1 and the rest assigned into 𝐵∗
1 , all the nodes in 𝐴∗

1 should make the coverage of all the edges 
in 𝐺, and it suggests that there is no inner-class edge in the class 𝐵∗

1 . Furthermore, if there are different solutions of the minimum 
vertex-cover of graph 𝐺, there will be different arrangements of 𝐴∗

1 and 𝐵∗
1 .

⟸ If a graph 𝐺 has the arrangement of 𝐴∗
1 and 𝐵∗

1 where 𝐵∗
1 has no inner-class edges, all nodes in 𝐴∗

1 will lead to a vertex-cover 
of 𝐺. As the nodes number of 𝐴∗

1 is equal to the maximum matching number, it also determines the lower bound of the minimum 
coverage. Thus, the nodes in 𝐴∗

1 form a minimum vertex-cover, which results in 𝐺 being a KE graph. □

By the above theorem, a graph is a KE graph if and only if after deleting all the nodes in 𝐴∗
1 with related edges, the rest graph 

related with nodes in 𝐵∗
1 is a graph consisting of isolated nodes without any edge. In this paper, we also call a classical KE graph as 

1-layer KE-graph. If a graph 𝐺 is not a 1-layer KE-graph, it implies that there exists no such 𝐵∗
1 that does not contain inner-class edges. 

In this case, our aim will be adjusted to find the proper separated classes 𝐴∗
1 and 𝐵∗

1 , in which the subgraph induced by 𝐵∗
1 has the 

lowest coverage number (smallest number of covered nodes) with respect to the minimum vertex-cover. Evidently, the KE graph can 
be viewed as a special case with the subgraph induced by 𝐵∗

1 having 0 coverage in this setting.
However, the core difficulty is to achieve the decomposition of 𝐴∗

1 and 𝐵∗
1 , i.e., to find the subgraph induced by 𝐵∗

1 having the 
lowest coverage. In the proper classification 𝐴∗

1 and 𝐵∗
1 , the subgraph induced by 𝐴∗

1 with the inter-class edges should occupy the 
coverage of vertex-cover the same as ♯𝐴∗

1 (nodes number in 𝐴∗
1) to make as many covered nodes of 𝐺 as possible belong to 𝐴∗

1 : if 
some node in 𝐴∗

1 does not need to be covered, its matched node in 𝐵∗
1 can switch with it, namely switching their class labels. As a 

result, the decomposition of 𝐴∗
1 and 𝐵∗

1 is equivalent to obtain a subgraph with coverage number ♯𝐶(𝐺) − ♯𝑀(𝐺), where ♯𝐶(𝐺) is the 
minimum coverage of 𝐺 and ♯𝑀(𝐺) is the maximum matching number of 𝐺. Since that the minimum vertex-cover problem belongs 
to NP-Complete problems and maximum matching belongs to P problems, the proper classification of 𝐴∗

1 and 𝐵∗
1 for general graphs 

is also a hard problem. Fortunately, it is easy and straightforward when the graph is a KE one, and the algorithm will be provided in 
next section.

Then, based on the above definition and analysis, if the subgraph 𝐺1 induced by 𝐵∗
1 is not empty and also a KE one, the 

graph 𝐺 is called a 2-layer KE-graph, and this subgraph could find a proper separated classes 𝐴∗
2 and 𝐵∗

2 , in which 𝐵∗
1 = 𝐴∗

2
⋃

𝐵∗
2 and 

𝐴∗
2
⋂

𝐵∗
2 = ∅, 𝐴∗

2 and 𝐵∗
2 have the same meaning with 𝐴∗

1 and 𝐵∗
1 but restricted on 𝐺1. When a graph is a 2-layer KE-graph, its 

minimum coverage is equal to the number of nodes in 𝐴∗
1
⋃

𝐴∗
2 . Similarly, we can define a 𝑘-layer KE-graph and nodes in 𝐺 can be 

decomposed as 𝐴∗
1
⋃

𝐴∗
2 ⋯ ⋃𝐴∗

𝑘

⋃
𝐵∗
𝑘

with the class 𝐵∗
𝑘

having no inner-class edges. In this way, the minimum coverage should be 
equal to ♯𝐴∗

1
⋃

𝐴∗
2 ⋯ ⋃𝐴∗

𝑘
. The upper bound of the 𝑘-layer KE-graph satisfies 𝑘 ≤ 𝑙𝑜𝑔2𝑛, where 𝑛 is the node number of the whole 

graph and the upper bound will be achieved when the graph is a complete graph. An example of 2-layer KE graph with detailed 
decomposing process to get its minimum vertex-cover is given in Fig. 3.

4.2. Algorithmic framework for measuring KE-layer

In this section, a framework to find the KE-layer number for general graphs is proposed. Several approximation strategies will 
6

be presented to approach the KE-layer number and minimum vertex-cover of graphs. To measure the KE-layer number of a general 
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graph, the maximum matching needs to be calculated at first and nodes are assigned into 𝐴1 and 𝐵1 as required above. Then the 
matched pairs of nodes will be switched to lower the coverage of 𝐵1 to approach 𝐵∗

1 . The framework is described in Algorithm 4.

Algorithm 4 Framework for Measuring KE-layer.
Let 𝑙 = 0, 𝐴0 = ∅, 𝐵0 =𝐺;
while 𝐵𝑙 is not KE graph do

𝑙 = 𝑙 + 1, 𝐺𝑙 = subgraph induced by 𝐵𝑙−1 ;
Calculate the maximum matching 𝑀(𝐺𝑙) of graph 𝐺𝑙 ;
Place each pair of matched nodes into 𝐴𝑙 and 𝐵𝑙 separately;
Place every unmatched node into 𝐵𝑙 ;
𝐸 = 𝑛, (𝐸′ , 𝐴𝑙, 𝐵𝑙) = Switch-Matched-Nodes(𝐺𝑙 ,𝐴𝑙 ,𝐵𝑙);
while 𝐸 >𝐸′ do

Let 𝐸 =𝐸′ , (𝐸′ , 𝐴𝑙, 𝐵𝑙) = Switch-Matched-Nodes(𝐺𝑙 ,𝐴𝑙 ,𝐵𝑙);
end while

end while

𝑙 = 𝑙 + 1, 𝐺𝑙 = subgraph induced by 𝐵𝑙−1 ;
Calculate the maximum matching 𝑀𝑙 of the subgraph induced by 𝐵𝑙 ;
Return KE-layer number 𝑙, vertex-cover number ♯𝑀𝑙 +

∑𝑙−1
𝑖=1 ♯𝐴𝑙

** Switch-Matched-Nodes(𝐺𝑙 ,𝐴𝑙 ,𝐵𝑙) returns new 𝐴𝑙 , 𝐵𝑙 and coverage of set 𝐵𝑙 .

In this framework, for a graph with KE-layer number 𝐿, 𝐴𝑙 with 1 ≤ 𝑙 ≤𝐿 is peeled layer by layer until the remained subgraph 𝐺𝐿

induced by nodes in 𝐵𝐿−1 is a KE one. All nodes contained in 𝐴𝑙 and the minimum vertex-cover of 𝐺𝐿 will compose the vertex-cover 
of graph 𝐺. Since 𝐺𝐿 is a KE graph, it is fast to find its minimum vertex-cover. Thus, the vertex-cover number of graph 𝐺 with 
KE-layer 𝐿 could be calculated as:

𝑀𝑉 𝐶𝐾𝐸−𝑙𝑎𝑦𝑒𝑟 = ♯𝑀𝐿 +
𝐿−1∑

𝑖=1
♯𝐴𝑙. (1)

During the whole process, the judgment of KE graphs on each 𝐺𝑙 could be implemented by Algorithm 1 proposed above. An detailed 
process to get its minimum vertex-cover could also be seen in Fig. 3.

4.3. Strategies for switching matched nodes

A key problem in this framework is how to place the matched pairs of nodes into 𝐴𝑙 and 𝐵𝑙 to lower the coverage of 𝐵𝑙 for each 
graph 𝐺𝑙 , namely the Switch-Matched-Nodes function above. Even with the constraint that every pair of matched nodes are placed 
into different sets, for a graph with maximum matching number 𝑀 , there are 2𝑀 possible arrangements, which makes it hard to find 
the optimal solution. This problem could be described as:

min
𝑛∈𝐴𝑙 or𝐵𝑙,∀𝑛∈𝑉 (𝐺𝑙)

Coverage(𝐺𝑙), (2)

𝑠.𝑡. ∀ matched edge (𝑖, 𝑗), 𝑖 ∈𝐴𝑙, 𝑗 ∈𝐵𝑙 or 𝑗 ∈𝐴𝑙, 𝑖 ∈𝐵𝑙. (3)

To solve it, several methods are proposed to optimize the solution. Two factors will determine the efficiency of this framework: 
the switching strategy of pairs of matched nodes and how to calculate the coverage of 𝐵𝑙 .

4.3.1. Switching strategy

A directed idea is to switch pairs of matched nodes in a greedy way. For each matched nodes pair, if switching them will lower 
the coverage of 𝐺𝑙 , this switching should be kept; if the switching does not change or increase the coverage, this pair of nodes should 
be switched back. The detailed procedure is presented in Algorithm 5, Strategy 1.

Algorithm 5 Switch-Matched-Nodes(G, A, B), Strategy 1.
𝐸 =Coverage of 𝐵;
for every matched nodes pair (𝑖, 𝑗) with 𝑖 ∈𝐴 and 𝑗 ∈𝐵 do

Place 𝑖 in 𝐵 and 𝑗 in 𝐴, and calculate 𝐸′ = Coverage of 𝐵;
if 𝐸′ ≥𝐸 then

Place 𝑖 back in 𝐴 and 𝑗 back in 𝐵;
else

𝐸 =𝐸′ ;
end if

end for

Return 𝐸, 𝐴, 𝐵

Obviously, this method is flawed: lowering the coverage in every step does not mean the global optimal solution. Another idea 
is to introduce some uncertainty and for each step, and here two pairs of matched nodes will be selected randomly and switched to 
7

lower the coverage. This process is presented in Algorithm 6, Strategy 2.
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Algorithm 6 Switch-Matched-Nodes(G, A, B), Strategy 2.
𝑡𝑒𝑚𝑝 = 0;
while 𝑡𝑒𝑚𝑝 < ♯𝑀(𝐺) do

𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + 1;
Calculate 𝐸 =Coverage of 𝐵;
Randomly select two matched nodes pairs (𝑖1, 𝑗1), (𝑖2 , 𝑗2), with 𝑖1 , 𝑖2 ∈𝐴, 𝑗1 , 𝑗2 ∈𝐵;
Place 𝑖1 , 𝑖2 in 𝐵 and 𝑗1 , 𝑗2 in 𝐴, calculate 𝐸′ = Coverage of 𝐵;
if 𝐸′ ≥𝐸 then

Place 𝑖1 , 𝑖2 back in 𝐴 and 𝑗1 , 𝑗2 back in 𝐵;
else

𝐸 =𝐸′ ;
end if

end while

Return 𝐸, 𝐴, 𝐵

Ensuring that each switch lowers the coverage is not always a good strategy. Sometimes, to allow the increase of coverage at 
several steps may bring more possibility to the solution. So in the next strategy, when the switch does not lower the coverage, 
we keep the switch with a certain small probability and continue the process. This strategy is applied based on strategy 2 and is 
described in Algorithm 7, Strategy 3.

Algorithm 7 Switch-Matched-Nodes(G, A, B), Strategy 3.
𝑡𝑒𝑚𝑝 = 0;
while 𝑡𝑒𝑚𝑝 < ♯𝑀(𝐺) do

𝑡𝑒𝑚𝑝 = 𝑡𝑒𝑚𝑝 + 1;
Calculate 𝐸 =Coverage of 𝐵;
Randomly select two matched nodes pairs (𝑖1, 𝑗1), (𝑖2 , 𝑗2), with 𝑖1 , 𝑖2 ∈𝐴, 𝑗1 , 𝑗2 ∈𝐵;
Place 𝑖1 , 𝑖2 in 𝐵 and 𝑗1 , 𝑗2 in 𝐴, calculate 𝐸′ = Coverage of 𝐵;
Generate a random number R;
if 𝐸′ ≥𝐸 and 𝑅 ≤ Threshold then

Place 𝑖1 , 𝑖2 back in 𝐴 and 𝑗1 , 𝑗2 back in 𝐵;
else

𝐸 =𝐸′ ;
end if

end while

Return 𝐸, 𝐴, 𝐵

4.3.2. Coverage estimation

The coverage here refers to the minimum vertex-cover number of 𝐺𝑙 , which is hard to get for a general graph. To estimate the 
coverage, a direct idea is to consider the edge number contained in 𝐺𝑙 . For random graphs, when the average degree increases, with 
a high probability the vertex-cover number will increase. Another idea is to use the maximum matching number of 𝐺𝑙 to approximate 
its coverage. The maximum matching number of a graph determines its lower boundary of minimum vertex-cover number, which 
suggests that it is a good estimation for the coverage of the graph. When the maximum matching number is high, with a high 
probability, this graph owns a high minimum vertex-cover number. In the following sections, we use edge energy and maximum 
matching energy to denote these two coverage estimations.

5. Experiments and results

In this section, a series of experiments will be conducted on random graphs. The switching strategies and vertex-cover estimating 
methods mentioned above will be implemented and compared. The KE-layer number and vertex-cover number of these graphs will 
be discussed.

5.1. KE-layer number

The KE-layer numbers of ER random graphs with different average degrees are calculated and discussed in this subsection. Each 
graph contains 1, 000 nodes and for each average degree value, 100 graphs are generated and calculated. The average KE-layer 
numbers at each average degree are presented in Fig. 4. As we could see, although different strategies perform different efficiency, 
there is a clear transition from 1-layer KE-graph phase to 2-layer KE-graph phase. The transition point is in the degree interval (2, 3). 
When average degree is higher than 12, the KE-layer number of almost all the graphs reaches 3. By the results in Fig. 4, Strategy 1

and 2 with the edge energy have good performance and they will be analyzed in the following.
The phase transition points will be estimated based on this fact: when the graphs are far from the phase transition points, most 

of them should have similar KE-layer number and the fluctuation (standard deviation) of their KE-layer numbers should be small, 
but the fluctuation should get increased when it approaches the transition points and reaches the highest at the transition point. 
For the location of the 1-layer KE-graph to 2-layer KE-graph transition point, by observing the standard deviation values in Fig. 5
8

from Strategy 1 and Strategy 2 with edge energy, it could be found that the transition point is around 𝑒 (average degree), where 
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Fig. 4. The KE-layer numbers by the proposed strategies on ER graphs with average degrees ranging from 1 to 20. For each average degree value, 100 graphs with 
1000 nodes are generated. Results of Strategy 1, 2, 3 with both edge energy and maximum matching energy are drawn on the graph. The possible position phase 
transition points from KE-level 1 to KE-level 2 and from KE-level 2 to KE-level 3 are drawn on dotted line.

Fig. 5. The KE-layer number errorbars by the proposed methods on ER graphs with various average degrees. For each average degree value, 100 graphs with 1, 000
nodes are generated. Results of Strategy 1, 2 with edge energy are drawn on the graph. The values of standard deviation are plotted in the inside figures. a. KE-layer 
numbers on ER graphs with average degrees ranging from 1 to 3. b. KE-layer numbers on ER graphs with average degrees ranging from 8 to 12.

the standard deviation reaches the highest and gets lower quickly after. For the location of the 2-layer KE-graph to 3-layer KE-graph 
transition point, a similar analysis could be conducted and the phase transition point is around 10.5 (average degree). Also when 
the 3-layer KE-graph starts to get dominate (average degree larger than 12), the standard deviation is very close to zero, which 
suggests that almost all the graphs with this average degree are 3-layer KE-graphs. Certainly, there will be more 𝑘-layer KE-graphs 
and corresponding phase transitions with 𝑘 > 3 when the average degree gets increased over 20, which will not be discussed in this 
9

paper.
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Fig. 6. The vertex-cover ratio by the methods we proposed. The experiments are conducted on ER graphs with different average degrees. For each average degree 
value, 100 graphs are generated and each graph contains 1, 000 nodes. Results of Strategy 1, 2, 3 with both edge energy and maximum matching energy, and core 
influence are drawn on the graph. The vertex-cover ratio with average degrees from 0 to 20 are plotted in the inside figure. The transition point 10.5 is plotted, around 
which the vertex-cover ratios of Strategy 1 and 2 with edge energy surpass those with maximum matching energy.

5.2. Minimum vertex-cover number

The process of calculating the KE-layer number could also approximate the minimum vertex-cover for the graphs. The experiments 
are also conducted on ER graphs, and in Fig. 6 the vertex-cover numbers of different strategies mentioned above are presented. As 
the Figure shown, before around average degree 10, the Strategy 2 with maximum matching energy works best compared to others. 
When the edge number contained in 𝐺𝑙 is used to estimate the coverage, results from Strategy 1 and Strategy 2 are quite similar, 
and perform the best when the average degree is higher than 10. An interesting phenomenon is that results of edge energy surpass the 
results of maximum matching energy at around degree 10. The reason is that when the average degree is higher than 10, Strategy

1 and 2 with edge energy could get lower KE-layer numbers, which lower the vertex-cover numbers at the same time. We also 
compare the results above with vertex-cover numbers from core influence [37] in Fig. 6. It could be observed that the KE-layer 
method performs better than core influence and could get lower minimum vertex-cover number with average degree lower than 10, 
and it performs almost same well with core influence when average degree is higher than 10.

To further study the efficiency of our KE-layer strategy, the vertex-cover numbers results from Strategy 2 with maximum match-
ing energy are compared with the exact minimum vertex-cover numbers on small-scale random graphs. The differences between 
𝑀𝑉 𝐶𝐾𝐸−𝑙𝑎𝑦𝑒𝑟 and real minimum vertex-cover numbers are calculated and the ratio of these differences against the total node num-
bers are presented in Table 1. As we could see, the KE-layer strategy performs well and when numbers of nodes increase the cover 
numbers stay stable. When the edge numbers increase with fixed node numbers, the gaps become larger, which is because of the 
increase of densely-connected clusters. Yet the KE-layer strategy still performs high efficiency and the vertex-cover numbers stay 
close to the real minimum vertex-cover numbers.

6. Conclusion and discussion

In this paper, the graphical representation and hierarchical decomposition mechanism of Vertex-Cover are studied and based on 
this, the KE-layer structure for general graphs is proposed. A sufficient and necessary condition of determining KE graphs is given 
in the viewpoint of classifying the nodes into different classes based on the maximum matching, and an algorithm for verifying 
the KE graphs is provided, which reveals the structural features and allows us to explore the hierarchical layer structure and the 
complexity of vertex-cover solution space evolution. Framework for calculating the KE-layer number for general graphs is discussed, 
and to solve the arranging and switching problem, several algorithmic strategies are compared including the switching strategies and 
coverage estimating methods. The phase transition points from 1-layer KE-graph to 2-layer KE-graph and from 2-layer KE-graph to 
10

3-layer KE-graph are also located. At the same time, in this process, the vertex-cover number could be calculated and approximated, 



Applied Mathematics and Computation 458 (2023) 128264W. Wei and X. Feng

Table 1

The percentages of differences between results of vertex-cover number from Strategy 2 with maximum 
matching energy and exact minimum vertex-cover numbers against node numbers. The experiments 
are conducted on the ER graphs with 80, 100 and 120 nodes with average degrees from 3 to 7 and every 
result is the average of 30 graphs.

Node Numbers
Average Degrees

3 4 5 6 7

𝑁 = 80 0.88% 1.38% 1.83% 1.42% 1.92%
𝑁 = 100 0.97% 1.77% 1.60% 1.63% 1.73%
𝑁 = 120 0.47% 1.44% 1.61% 1.81% 1.58%

experiments are conducted on ER graphs to examine the efficiency, and the performance is related to the KE-layer complexity. This 
research provides a new perspective to approach the complexity of graphs and minimum vertex-cover problem.

A lot of research on this topic can be expected in future research. The switching methods could be further explored to improve 
the efficiency. Also, calculating the maximum matching for each step is very time-consuming, new convenient and fast coverage 
estimation measurement indexes deserve more exploration. At the same time, more other aspects related to this research could be 
expected. For example, some microscope structure, like motifs [39] and graphlets [40], may play crucial roles in the formation of 
KE graphs. Finding these structural components could improve the efficiency greatly. Also, relations between minimum vertex-cover 
and KE graphs could be further studied to find more frameworks to approach the complexity of NP problems.
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